
ABS2 THRU ABS10

- · Glass passivated die construction
- Low forward voltage drop
- · High current capability
- · High surge current capability
- · Designed for surface mount application ·

Plastic material-UL flammability 94V-0

Mechanical Data

- · Case:ABS, molded plastic
- Terminals: plated leads solderable per MIL-STD-202, Method 208
- · Polarity: as marked on case
- Mounting position: Any
- · Marking: type number
- · Lead Free: For RoHS / Lead Free Version,

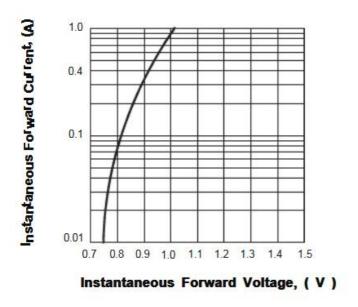
Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

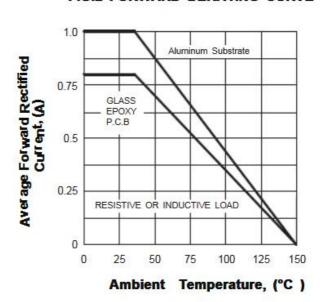
Rating at 25 $^{\circ}$ C ambient temperature unless otherwise specified.

Single Phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%.


TYPE NUMBER	SYMBOL	ABS2	ABS4	ABS6	ABS8	ABS10	UNITS
Peak Repetitive Reverse Voltage	Vrrm						
Working Peak Reverse Voltage DC Blocking Voltage	VRWM	200	400	600	800	1000	V
	VDC						
RMS Reverse Voltage	VRMS	140	280	420	560	700	V
Maximum average forward rectified current @ A=40	lo				1.0		Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				35		А
Forward Voltage per element @IF=1.0A	VFM				1.1		V
Peak Reverse Current @ _{_T} A =25 °C At Rated DC Blocking Voltage @TA =125 °C	lr				5.0 100		uA
Typical Junction Capacitance per leg (Note 1)	Сл				25		pF
Typical Thermal Resistance per leg (Note 2)	Rеја				80	°C/W	
	Rejl				16		CIVV
Operating and Storage Temperature Range	Т _J ,Тsтg				-55to+15	0	$^{\circ}$

Note:1. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.


2.Thermal resistance from junction to ambient and from junction to lead mounted on P.C.B with 0.5×0.5"(13×13mm)cop.

ABS2 THRU ABS10

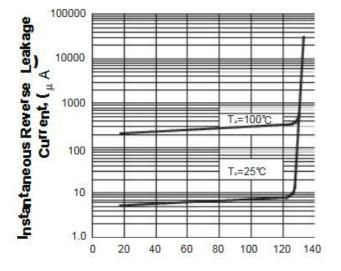

FIG.1 TYPICAL FORWARD CHARACTERISTICS

FIG.2 FORWARD DERATING CURVE

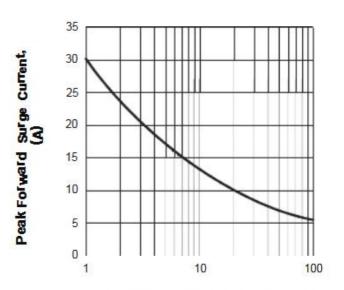


FIG.3 TYPICAL REVERSE CHARACTERISTICS

Percent Of Rated Peak Reverse Voltage, %

FIG.4 PEAK FORWARD SURGE CURRENT

Number Of Cycles At 69H